Molecular cloning and characterization of genes for Shigella sonnei form I O polysaccharide: proposed biosynthetic pathway and stable expression in a live salmonella vaccine vector.
نویسندگان
چکیده
The gene region for biosynthesis of Shigella sonnei form I O polysaccharide (O-Ps) and flanking sequences, totaling >18 kb, was characterized by deletion analysis to define a minimal construct for development of Salmonella-based live vaccine vector strains. Lipopolysaccharide (LPS) expression and DNA sequence studies of plasmid deletion derivatives indicated form I O-Ps expression from a 12.3-kb region containing a putative promoter and 10 contiguous open reading frames (ORFs), one of which is the transposase of IS630. A detailed biosynthetic pathway, consistent with the predicted functions of eight of the nine essential ORFs and the form I O-Ps structure, is proposed. Further sequencing identified partial IS elements (i.e., IS91 and IS630) and wzz upstream of the form I coding region and a fragment of aqpZ and additional full or partial IS elements (i.e., IS629, IS91, and IS911) downstream of this region. The stability of plasmid-based form I O-Ps expression was greater from low-copy vectors than from high-copy vectors and was enhanced by deletion of the downstream IS91 from plasmid inserts. Both core-linked (i.e., LPS) and non-core-linked (i.e., capsule-like) surface expression of form I O-Ps were detected by Western blotting and silver staining of polyacrylamide gel electrophoresis-separated Shigella and Escherichia coli extracts. However, salmonellae, which have a core that is chemically dissimilar to that of shigellae, expressed only non-core-linked surface-associated form I O-Ps. Finally, attenuated Salmonella enterica serovar Typhi live vaccine vector candidates, containing minimal-sized form I operon constructs, elicited immune protection in mice against virulent S. sonnei challenge, thereby supporting the promise of live, oral vaccines for the prevention of shigellosis.
منابع مشابه
Fusion of Cholera toxin B subunit (ctxB) with Shigella dysenteriae type I toxin B subunit (stxB), Cloning and Expression that in E. coli
Background and Objective: Shiga toxin (STx) is the main virulence factor in Shigella Dysenteriae type I and is composed of an enzymatic subunit STxA monomer and a receptor-binding STxB homopentamer. Shigella toxin B subunit (STxB) is a non-toxic homopentameric protein responsible for toxin binding and internalization into target cells by interacting with glycolipid (Gb3). Cholera toxi...
متن کاملMOLECULAR CHARACTERIZATION AND OPTIMIZATION OF VI-CAPSULAR POLYSACCHARIDE OF SALMONELLA TYPHI TY6S PRODUCTION IN BIOREACTOR
The role of Vi-capsular polysaccharide (Vi-CPS) in human immunity against infection caused by Salmonella typhi is well known. The downstream process of purification generally causes depolymerization of Vi-CPS to a nonimmunogenic low molecular weight form. In the present study, a standard strain of Sal. typhi Ty6s was grown under submerge cultural conditions in a pilot-plant scale of 90 Liter fe...
متن کاملConstruction of a potential bivalent vaccine strain: introduction of Shigella sonnei form I antigen genes into the galE Salmonella typhi Ty21a typhoid vaccine strain.
Shigella sonnei, an intestinal pathogen, produces a characteristic form I cell surface antigen now known to be plasmid encoded. We considered that the GalE Salmonella typhi Ty21a oral vaccine strain, highly effective against typhoid, might be modified so as to be protective also against shigellosis due to S. sonnei. The plasmid responsible for form I antigen synthesis was therefore conjugally t...
متن کاملCloning and sequencing of ompf Salmonella typhi Salmonella ompf gene in Escherichia coli Origami
Background and Aim: Salmonella Typhi belongs to the family Enterobacteriaceae, gram-negative bacilli and causes gastrointestinal diseases such as typhoid. This bacterium has a special structure and various genes, including the ompf gene (outer membrane protein). Recent studies have shown the possibility of using ompf in the development of a diagnostic tuberculosis vaccine. Therefore, the aim of...
متن کاملFusion of CtxB with StxB, Cloning and Expression of in Esherichia coli: A challenge for Improvement of Immune Response Against StxB
Cholera toxin B subunit (CtxB) is a homopantameric, nontoxic subunit of cholera toxin that is responsible for its binding to the cell and has been known as a mucosal adjuvant for vaccines that could increase homoral and mocusal immunity response. In this work, the CtxB gene was fused to the StxB gene from Shigella dysenteriae type I a vaccine antigen candidate against t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 70 8 شماره
صفحات -
تاریخ انتشار 2002